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1. INTRODUCTION 

Let I7 = Sp(2m, 2) and I’ = X7, where Z is the translation group of the 
affine space AG(2m, 2). 17 acts 2-transitively on the cosets of each orthogonal 
subgroup G@(2m, 2), E = *l, and r has a second class of subgroups iso- 
morphic to 17 ([lo, pp. 236, 2401, [6], and [14]). By considering a certain 

symmetric design P(2m) having r as its full automorphism group, we will 
prove these results. The symmetric designs 9+(2m) will be studied and 
characterized in terms of an interesting property concerning the symmetric 
difference of distinct blocks. Other properties and characterizations of these 
desings will also be given, and an application made to rank 3 linear groups. 

There are several ways to construct Yf(2m). One way is in terms of differ- 
ence sets [3, p. 1081; from this point of view, Ye(2m) has the unusual 
property of arising from difference sets in m + 1 nonisomorphic abelian 
groups. Using a description in terms of the incidence matrix, Block [l] 
observed that the automorphism group of F(2m) is 2-transitive. The present 

work was motivated by Block’s result. In the course of studying the full 
automorphism group Yf(2m), a description was found in terms of GOs(2m, 2) 
and Sp(2m, 2) (see Section 4). More recently, the designs P(2m) were 
discovered in terms of the latter description by A. Rudvalis (unpublished) 
and Cameron and Seidel [2]. 

Yet another description of the designs P(2m) arises from using suitable 
dual ovals in desarguesian and Liineburg-Tits planes. The construction in 
terms of desarguesian planes was obtained by the author [3, p. 951 at the 
same time that the incidence matrix and symplectic group descriptions were 
first considered; however, it was not originally known that the descriptions 
produced the same designs. The construction from the Liineburg-Tits planes 
requires the use of the designs to prove a new property of the planes. We note 
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that, using suitable dual ovals, new symmetric designs can also be obtained 
having the same parameters as Y(2m). The determination of those translation 
planes which are related to Y1(2m) as in Section 7 seems to be an interesting 

but difficult problem. 

2. DEFINITIONS 

The definitions and elementary properties of symplectic and orthogonal 
groups are assumed from [S]. GOc(2m, 2) will denote O.&F, , Q) in 
Dieudonne’s notation, where E = + 1 if the quadratic form Q has index m, 
and<=-lifthisindexism- 1. 

The basic properties of symmetric designs and difference set designs are 
found in [3]. Isomorphic designs will be identified. Symmetric designs will 
always be assumed to have z, 2 k + 2 > 4, except for the case v  = 4 and 
k = 1 or3. 

Points will be denoted by 0, x, y, z and blocks by B, C, D, E, X, Y. 
I f  S and T are sets of points of a design, then %?S is the complement of 

S and S n T is the symmetric difference (S u T) - (S n T). (This notation 
is intended to distinguish the symmetric difference of blocks from the sum of 

blocks, which will be defined later in a special situation.) 
I f  I’ is a permutation group, r, denoted the global stabilizer of the set S. 

Set 

H(2) = 

3. THE DESIGNS 9(2m) 

-1 1 1 1 
1 -1 1 1 
1 l-l 1 
1 1 l-l 

For each positive integer m. Let H(2m) be the tensor product of m copies of 
H(2). Rows and columns of H(2m) have 22m-1 + c2”-l entries E, where 
E = f  1. Any two distinct rows or columns have in common 22m-a + ~2”~~ 
entries E. We can thus regard rows and columns as the points and blocks of 
a symmetric design 9’6(2m), a point being on a block if and only if the 
corresponding entry is E. P(2m) has parameters 

v = 22m, k = 22”+-1 + &W-l, /) = 22m--2 + &w-l. (1) 

9(2m) and Y-‘(2m) are complementary designs. P(2m) was first described 
in the present form by Block [l]. 
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As H(2m) is symmetric, 972~~) is self-dual. 

Yc(2m) has the following basic property: 

LEMMA 1. Points can be labelled by the elements of an additive group G in 
such a way that Z = {x + x + g 1 g E G} is an automorphism group sharply 
transitive on the points, and, for any distinct blocks X and Y, X n Y is a left 

coset of a subgroup of G. 

Proof. As X n Y = %7X n %?Y, we may assume that E = 1. If  m = 1, 
then Y1(2) has a unique automorphism group .Za with the stated properties. 
If  m > 1, let .&,-a be an automorphism group of P(2m - 2) which satisfies 
Lemma 1. The elements of Za and Za2m--2 may be regarded as pairs of per- 
mutation matrices. By taking the tensor products of such matrices we find 
that Z = Zz x ,&,-a is an automorphism group of y1(2m) sharply transitive 

on the points. Let G, and Gz,-z correspond to Zs and ,E&+a as in Lemma 1. 
As the rows of H(2) and H(2m - 2) are labelled by G, and Gz,-z, the rows 
of H(2m) can be labelled by G = G, x Game2 so that Z = {x + x + g 1 g E G). 
Regard G as the set of ordered pairs (xa , xam-a) with x2 E G, and xZm-a E G2+a . 
Then there is a l-1 correspondence between the blocks B of P(2m) and the 
pairs B, , Bzrn-% of blocks of P(2) and .401(2m - 2), respectively, such that 

B = (B, > B,m-2) u (+Wt , @%a). 

Suppose also that 

Then 

B f X = (X2 , &,,,-2) u (VX, , U&m-,). 

B A X = (4 A X2 r &w--2 A -&n-A u (W4 a X2), V%,-, n &m-J>. 

B, n X, is empty or a coset of a subgroup H, of G, . By induction, 
B2,,+-2 a XzmP2 is empty or a coset of a subgroup Hzm--Q of G,,-, of order 
22m-3. If  either B, n X, or Bzrnpz a Xzm-a = a, our assertion is immediate. 

If  both are nonempty, write B, n X, = x2 + H, , %?(B, n X,) = yz + Hz , 
B 2m-2 A Xzmp2 = x2m--2 + H2n-2 and W32m-2 A Xzm-J = y2m-2 + ffzmp2 . 
Then B n X = (x2 , xZmp2 ) + H, where H is the subgroup generated by 

(H2 , Hzrne2) and (x2 + y2 , x2m-2 + yznzW2). This proves Lemma 1. 
Note that G is an elementary abelian 2-group in Lemma 1. However, in 

the first part of the above proof we could have taken Z2 to be any one of the 
four sharply transitive subgroups of S, . Thus, 9(2m) may be regarded as a 
difference set design in many ways, of which at least m + I are inequivalent 
from the point of view of difference sets. For E = - 1, these difference sets 

are described on p. 108 of [3]. 
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Note also that the dual of Lemma 1 holds with the same group Z: This 
follows from the fact that all the permutation matrices involved are involutory 
and hence symmetric. 

4. PROPERTIES AND CHARACTERIZATIONS OF P(2m) 

Let 9 be a symmetric design satisfying Lemma 1, We will prove properties 
of 58 which will yield the automorphism group of Y72m) together with 
characterizations of 972~2). As usual, set n = K - ;\. Fix a block B on the 
identity element o of G. If  X # B, set 

We first show that .Zsnx is transitive on H, and that C is an elementary 
abelian 2-group. As @7X n %Y = X n Y, we may temporarily assume that 

k < 2n. Zsnx is a group of order 1 B n X [ = 2n, so that / H, 1 = 2an for 
some Integer a. Smce ZB:,,, is transitive on B a X, each point of B a X is on 
2an . n/2n = an blocks of H, . As k < 2n, a = 1 and .ZBsax is transitive on 
H, . Let 1 # o E Z and set X = B”. I f  U’ E ZB,, moves B to X, then D = (I’. 

Thus, B a X = (B a X)” = X a X0, so B = X0. It follows that Z has 
exponent 2. By a result of Mann [3, p. 61],9 has parameters (1). In particular, 
2n = iv. 

.Z determines affine spaces 02 and GP over GF(2), each with translation 
group Z, such that the points of cpd and GP are, respectively, the points and 

blocks of 9. H, is a hyperplane of Gpl#. If  B is regarded as the “origin” in GP, 
the sum of two blocks is meaningful. Moreover, the definition of H, shows 
that X-+H,, X # B, defines a symplectic polarity of the projective space 
CP - {B}. Let f(X, Y) be the corresponding bilinear form. 

The definition of addition shows that, if Y E H, and 0 E .&A, takes B to 
Y,thenX”=X+Y.Thus,BnX=Yn(X+Y).IfY$H,randaEZ 
takes B to Y, then Gf(B a X) = (B a X)” = Y n (X + Y). This proves: 

LEMMA 2. If X # B and Y are blocks, then B a X a Y = Y + X or 
U(X + Y) according to whether YE H, or Y $ H, . 

For each block X let Q(X) E GF(2) be 0 if o E X and 1 if o $X. Then 
Q(B) = 0. We claim that, for all blocks X and Y, 

Q(X + Y> = Q(X) + Q(Y) + f V, Y). (2) 

Repeated use will be made of Lemma 2. We may assume that X # B, 
Y#B,XfY.LetQ(X)=O.Theno$B~X.1fY~Hrthenf(X,Y)=0, 
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B n X = Y n (X + Y), and thus Q(Y) = 0 if and only if Q(X + Y) = 0. 

If  Y $ H, thenf(X, Y) = 1, B n X = V( Y n (X + Y)), and thus Q( Y) = 0 
if and only if Q(X + Y) = 1. 

Next, let o $ X, Y. Then o E B n X and Q(X) = Q(Y) = 1. If  YE H, 
then f(X,Y)=O, BnX=Ya(X+Y), and thus OEX+Y, so 
Q(X + Y) = 0. Finally, if Y # H, , then f(X, Y) = 1, 

B A .X = g(Y n (X + Y)), 

and thus o $ X + Y, so Q(X + Y) = 1. This proves (2). 
Thus, Q is a quadratic form associated withf. The set of blocks on o is its 

set of singular points. As K = 2”~r(2~ + E), Q has index m if E = 1 or m - 1 
if E = - 1. This proves that 9 is unique, and thus is 972m). We can now 

prove the following: 

THEOREM 1. The full automorphism group r of F(2m) is a semidirect 
product of the translation’group Z of AG(2m, 2) with Sp(Zm, 2). If B is a block, 
then re is isomorphic to Sp(2m, 2) and is 2-transitive on B and VB. Moreover, 
if x E B then I’,, is GOE(2m, 2). 

Proof. I f  B, X and Y are distinct then (B n X) n (B n Y) # 0, so the 
v  - 1 hyperplanes B n X, X # B, are pairwise non-parallel. We can thus 
recover 0L from 9+(2m), so that r is a collineation group of Gl! and a#. 
r = 23’s = Z’s . Regarding r as a collineation group of a, we have that r, 
preserves an alternating form f ‘, while r,,, , o E B, preserves a quadratic 
from Q’ in such a way that B is the set of singular points of Q’. Since the 

blocks of YE(2m) are the sets B + x, x E G, the group of the quadratic form 
Q’ permutes them and thus is r,, . As o can be any point of B, / r,: r,, 1 = k, 
and it follows that r, and I’, are both isomorphic to Sp(2m, 2). Finally, I’,, 
is transitive on B - {o}, so that I’, is 2-transitive on B. Since the same is true 
for 9+(2m), the result follows. 

COROLLARY 1. Sp(2m, 2) acts 2-transitively on the cosets of its subgroups 
GOe(2m, 2). 

COROLLARY 2. r has an involutory outer automorphism 0 such that 

(i) e centralizes E, 

(ii) 0 interchanges r, and r, , where o is a point and B is a block on o; and 

(iii) If II is any subgroup of Sp(2m, 2) not fixing (as a whole) any set of 
2m-1(2m 5 1) points of AG(2m, 2), then IIs is a second complement to Z in El7 
moving all points. 

481/33/I-4 
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Proof. 6: x t) B + x, x E G, is a polarity and hence acts on r. 8 satisfies 
(i) and (ii), and thus is an outer automorphism of I’. Let n in and Bn = 
B + z, z E G. Then, for any x, 

xene = (B + x)ns = (B= + x~)~ 

= (B + z + CC”)” = xz + z. 

Thus, De < Zl7, so 0 normalizes ZZI by (i). (Z7)s = IP fixes both B and 
%B. By hypothesis, P and 17 are not conjugate, which proves (iii). 

COROLLARY 3. 972m) can be constructed as follows. Let V be a 2m- 
dimensional vector space over GF(2), and Q a nondegenerate quadratic form on V 
whose group is GOC(2m, 2). Let B be the set of singular vectors of Q. Then the 

points and blocks of YE(2m) are the vectors of V and the translates B + v, v  E V, 
respectively. 

It follows that, if Q is as in Corollary 3, B is its set of singular vectors, and 
v  E B, then B + v  is the set of singular vectors of a nondegenerate quadratic 
form associated with the same alternating form as is Q. 

THEOREM 2. Let 9 be a symmetric design admitting a sharply point- 
transitive automorphism group .Z. Define addition of points so that Z is the set 
of right translations of the group G of points. Then the following statements are 
equivalent. 

(i) 9 is 9(2m) for some m and E. 

(ii) X a Y is a left coset of a subgroup of G whenever X and Y are 
distinct blocks. 

(iii) %?(X a Y) is a left coset of a subgroup of G whenever X and Y are 
distinct blocks. 

Proof. We have already shown that (i) o (ii). 

(iii) * (ii). We may assume that k > 2X. Suppose v  # 4n. As (v - 2n) 1 a, 
we have v  > 3(v - 2n). Then 

X(3n - 1) > A(v - 1) = k(k - 1) > 2X(k - l), 

so k > 3X - 1. The same argument now yields X(3n - 1 )> 3h(k - I), 
which is impossible. Thus, v  = 4n, so (ii) is clear. 

(ii) Z- (iii). This follows from (i). 
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5. THE SYMMETRIC DIFFERENCE PROPERTY 

In this section we will consider a symmetric design 9 satisfying the 
following condition: 

(SDP) If B, C, D are any three blocks, then B n C a D is either a block 
or the complement of a block. 

By Lemma 2 of Section 2, 9(2m) satisfies (SDP). 

THEOREM 3. Let 9 be a symmetric design satisfying (SDP). Then the 
following statements hold: 

(i) 9 has the same parameters as ?(2m) for some m and E. 

(ii) Let 0? consist of the points of 9 and the symmetric daflerences of the 
pairs of blocks of 9. Then GZ is the set of points and hyperplanes of an a&e 

space AG(2m, 2). 

(iii) Fix a point o. In Q?, dejine addition of points in the natural way, so 
that o becomes the zero element of a vector space over GF(2). For each point x, 
let (x) be the set of blocks on x. Then (0) n (x) n ( y) = (x + y) or its com- 
plement, for all points x, y  with x # 0, y  # 0, x # y. 

(iv) The dual of 9 satisfies (SDP). 

(v) Fix a block B. For all X, Y, dejine the block X + Y by 

BnXnY=X+Y 

or its complement. Then the blocks form an elementary abelian 2-group under 
addition. 

Proof. (i) and (ii). Suppose that, whenever B, C, D are different blocks, 

B A C n D is a block. Then / B n C n D 1 is independent of B, C, D. By 
the Dembowski-Wagner Theorem [4], 9 is a projective space, and hence 

fails to satisfy (SDP). Thus, for some B, C, D, B n C n D is not a block, 
and hence satisfies B n C a D = WE for a block E. Now B a C = 
%(D n E), so v  = 4n. 

Next, for any B # C and D # E, if B a C # D a E then 

l(B A C) n (D A E)l = n. 

For, D a E = B a X or %?(B a X) for some X. It is now elementary to 
calculate that l(B a C) n (B n X)1 = n, as required. 

Call a set B a C or %?(B a C) a hyperplane whenever B # C. Let a 
consist of the points and hyperplanes, and let QZz consist of the points fx and 
hyperplanes on x. 

If  H is a hyperplane, each B determines a unique C such that H = B a C 
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or V(B n C). Thus, counting in two ways the ordered triples (B, C, H) with 
H = B A C or %T(B A C), we find that there are exactly 2o(v - 1)/v = 
2(v - 1) hyperplanes. Consequently, there are an average of2(v - 1) . n/2n = 
z, - 1 hyperplanes per point. 

On the other hand, for each point X, the dual of & has a constant number 
of blocks per point, and a constant number of blocks per 2 distinct points. 
Consequently, by a standard incidence matrix argument [3, p. 201, Q!% has 
at most z, - I hyperplanes. It follows that G$ is a symmetric design, and a 

is a 3-design. 
Moreover, suppose H and H’ are hyperplanes on X. Fix a block B on X. 

Then H = B A C or V(B A C), and H’ = B A c’ or g(B A C’), for some 
blocks C and C’. Consequently, x E %(H n H’) = C A C’ or Q?(C A C’), so 
V(H A H’) is in 0&. Since 6YZ is a H a d amard design, it is a projective space 
over GF(2) by the Dembowski-Wagner Theorem [4]. Consequently, GZ is an 
affine space over GF(2). Now (i) f  o 11 ows from a result of Mann [3, p. 611, 
since v  is a power of 2. 

Moreover, the complement of a hyperplane is now also a hyperplane. This 
proves (ii). 

(iii). Let {p, Q, Y, s} be any plane of CY. We must show that (p) + (4) = 
(r) + (s) or its complement. Let B, C E (p) + (4); it suffices to show that B 
and C are both in (r) + (s) or are both in its complement. But B and C are on 
just one of p, q, sop, q E B A C or p, q E V(B n C). Since B n C is a hyper- 
plane of GZ, either r, s E B A C or I, s E %?(B A C). Then either B and C 
are on just one of r, s, or else neither is on just one of these points. Con- 

sequently, B and C are both in (r) + (s) or its complement. 

(iv). This is clear from (iii). 

(v). This is the dual of (iii). 

EXAMPLE (N. Patterson). Let f  be a nondegenerate alternating bilinear 
form on a vector space of dimension 2m over GF(2). Fix E, and construct 
9(2m) as in the proof of Theorem 1. Let W be a totally isotropic subspace 
of dimension m. Consider the subsets B A Wand %?(B A W), where B runs 
through the blocks of P(2m). It is not difficult to show that each subset 
has size 272” & E), and that the subsets of size 2m-1(2m + c) form a 
symmetric design 9 (with point set I’). Clearly, 9 satisfies (SDP). Further 
designs satisfying (SDP) can now be obtained from 9 and 972K) for any K 
by the tensor product method of Section 3. 

An isomorphism between two symmetric designs satisfying (SDP) is, by 
Theorem 3, induced by a collineation of the underlying affine spaces. It is 
therefore easy to see that the designs obtained from the above construction 
are not isomorphic to one another, nor to any 9+(2m). 
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Remark (P, Cameron). Any (1, - 1) incidence matrix of a symmetric 
design 9 having v = 472 is a Hadamard matrix H. It is not difficult to check 
that 9 satisfies (SDP) if and only if (i) v = 22m for some m, and (ii) H = 
TH(2m)U for some monomial permutation matrices T and U. 

6. FURTHER CHARACTERIZATIONS 

We now present additional characterizations of the designs YG(2m), based 
on other properties of their automorphism groups. We begin with two lemmas. 

LEMMA 3. Let y be a nontrivial automorphism of a symmetric design, where 
y has prime order. Then 

(i) y fixes at most &v points; and 

(ii) If y$xes $~points, then v = 4n and y2 = 1. 

Proof. (i) is Theorem 3 of Feit [7], while (ii) is essentially contained in 
the proof of that theorem. 

LEMMA 4. Let 9 be a symmetric design with v = 4n. Let u and 0’ be 
nontrivial automorphisms, each fixing 2n points, such that F, n F,, = 0. Then 

(i) F, = %(B n BU) whenever B # Bu; 

(ii) u and u’$x no common block; 

(iii) F, = V(B n C) implies that C = BO; 

(iv) u is the unique nontrivial automorphism of 9$xing F, pointwise; and 

(v) IfB#BOandXisanyblock,then~BnBOnX~=~Xorh-in. 

Proof. (i). u moves each of the 2n = v - 2n points in B n BB. 

(ii). Suppose u and u’ fix a common block. As each moves 2n and fixes 2n 
blocks, they must move a common block B. Then %‘(B n Bo) = F, = %7FOl = 
B n Bo’, so V?BO = BO’, which is ridiculous. 

(iii). F,, = ‘8(X n X0) and %FU = F,, = %(Y n Y”‘) for at least 2n 
blocks X and 2n blocks Y. Consequently, the given block B must satisfy (by (ii)) 
%FO=BBBO or F,=W%,,=B@,Ba. Now B~C=$?Fq=B~BD 
or V(B n B”) implies that C = B”. 

(iv). Let y be a nontrivial automorphism fixing F,, pointwise. Then (iii) 
applies to u and y. Consequently, BU # B implies ‘ik%, = %7F0 = B n By, so 
BY = BU. Similarly, By # B implies By = Bu. Thus, y = U. 

(v). Either X n X0 = %?Fq or X n XQ’ = S?FO, = F, , so either n = 
jXn(BnBO)Iorn=IXnV(BaBO)I. 
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THEOREM 4. Let 9 be a symmetric design. Then for some m and E, 9 is 
p(2m), PG(m, 2), or the complementary design of PG(m, 2), if and only if for 
any distinct blocks B and C, there is a nontrivial automorphism of 9$x&g all 
points not in B n C. 

Proof. PG(m, 2) and its complementary design clearly satisfy the given 
condition. By Section 4, for 9 = 9(2m) each set V(B n C) is fixed point- 
wise by a nontrivial elation of the underlying affine space AG(2m, 2). 

Conversely, assume that 9 satisfies the given condition. Since A(v - 1) = 
k(k - l), we may assume that v  > 2k. Let T be the given set of 

automorphisms, where we may assume that each u E T has prime order. 
Each D E T fixes at least v  - 2n points. By Lemma 1, v  - 2n < $21, so 
v  <4n. 

Suppose CJ E T moves B. Then the set F, of fixed points of (T is disjoint 
from B n BU, so VFD C B n Ba. Since o fixes at least v  - 2n points, %7Fq = 
B n BU. If r E T also moves B, %?Fr = B n Br. A simple calculation now 
proves the following fact. 

LEMMA 5. If cr, 7 E T move a common block, then either F, = F, or 
/ ‘3F0 n +?F7 j = n. 

Assume first that any two elements u, 7 E T move a common block. Then, 
by Lemma 5, distinct sets %‘FO have exactly n common points. Let 9* be the 
dual of the incidence structure of points and distinct sets %7FC , 0 E T. Then 
9” has v* points, b* = v  blocks, Y* = 2n blocks per point, and h* = n 
blocks per two distinct points. By a standard incidence matrix argument [3, 
p. 201, v  = b* >, v*. On the other hand, for a fixed block B there are v  - 1 
sets B n C with C # B, so v* > v  - 1. Suppose v* = v  - 1. Then, for 
each %7F0 = X a Y and each B, (X n Y) n B is a block. This is impossible 
by Theorem 3. Consequently, v* = v. Thus, for each %?FO , there is exactly 
one block B, such that B, b %?FO is not a block. Let p = / B, n VFW /. 
Counting in two ways the pairs (x, X) with x E X n %‘Fg , we find by Lemma 5 
that 2n . k = (v - 1) n + II. Consequently, p = n(2k - v  + 1) < 0, so 
v  - 1 = 2k and p = 0. Then B, C F, , so B, = F, as both sets have 
k = v  - 2n points. Thus, for any distinct blocks B, C, there are 3 = 
1 + (v - 1)/k blocks containing B n C. By the Dembowski-Wagner 
Theorem [4], g is PG(m, 2) for some m. 

We may thus assume that some cr, G’ E T move no common block. Then 
v  > 2(v - ) F, 1) = 4n, so v  = 4n. Hence, D and u’ fix no common block. 
By the dual of Lemma 4, F, n F,, = 0. Let T,, be the set of u E T such 
that some such u’ E T exists, and let (T,,) be the group generated by T, . 

Consider (T and u‘. Take any blocks B and D with Ba = B and Do # D. 
By Lemma 4(ii), BO’ # B, so B a BU’ = %7F0, = F, = %‘(D n DO), and 
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hence B a D = %?(Bo’ a Da). Consequently, if 7 E T has F, = 97(B n D), 
then 7 E T,, and BT = D (by Lemma 4(iii)). It follows that (To) is transitive 
on the blocks and hence the points of 9. 

We now show that To = T. For, suppose 7 E T. The transitivity of (T,,) 
implies that some 0 E TO must move F, . Let O’ be as before. By Lemma 1, 
a2 = r2 = 1. Then F,,,, = F,o # F, , so OT(T # 7. Also, F,,, # F, by Lemma 
4(iv). Clearly, F,,, I F, n F7 # @ and VF, n VF7 # 0. By Lemma 5, 

IF,nF,I =n.Thus,F,,,#F,,F,,/F,,,nF,I >n,andIF,,,nI;;I >n, 
so Lemma 5 implies that F,,, nF, =F,,,,nF, =F,nF,.Then 

FdVAF,) f 0, 

so Fo,, = %?(F,, n F,) as both sets have exactly 2n elements. Similarly, 
F,,, #F, , F7 (by Lemma 4(iv)), F,,, n F, = F,,, n F, = F, n F, , and 
hence F,,, = @:(F, A FJ = Fom . Again by Lemma 4(iv), VT = (~70. 
Consequently, 7 = (JTUTU E TO , as required. 

Thus, T,, = T. Let B, C, D be any distinct blocks. Then B n C = %‘Fc =F,# 
for some cr, (T’ E T. By Lemma 4(ii), c or u’ moves D, so B n C = D A DQ or 
%?(D a DO’). Now Theorem 3 applies: the points of 9 and set B a C form 

an affine space AG(2m, 2). Since F, and F,, are parallel hyperplanes fixed 
pointwise by the nontrivial collineations u and or, respectively, UU' must be a 
translation. Then (T) contains the translation group Z of AG(2m, 2), as 
F, can be any hyperplane. Clearly, EF, is transitive on F, . Consequently, 
Theorem 4 follows from Theorem 2. 

THEOREM 5. A symmetric design is 9(2m) for some m, E, if and only ;f  its 
automorphism group is 2-transitive on blocks and contains a nontrivial element 
$xing at least &v points. 

Proof. By Lemma 3, v  = 4n. If  y  fixes &J points and moves B, then 
%?(B a BY) is its set of fixed points. Since the automorphism group is 
2-transitive on blocks [3, p. 791, the result follows from Theorem 4. 

LEMMA 6. Let II be a transitive collineation group of PG(d, 2) such that 
the stabilizer of a point x has point-orbits of lengths 1, 2n - 2, 2n, where 
n = 2d-1. Let xl consist of x and the points of the orbit of length 2n - 2. Then 

XI is a hyperplane and x + x1. is a symplectic polarity preserved by Il. 

Proof. Let 2 be the translation group of OZ = AG(d + 1, 2). r = Zfl is 
a collineation group of GZ. If  x + p then r,, has a unique orbit H(p, x) = 
H(x, p) of length 2n. Let 4 $ {p, x} u H(p, x). I f  u E Z moves p to x, then u 

centralizes r,, . Then y  = Q” $ H(p, x) and rPqr = r,,, . 
As (2n - 2,2n) = 2, r,,, has orbits on H(p, x) of lengths divisible by n. 

In view of the orbit lengths of r,, , r, is primitive on the points #x. In 
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particular, H(p, X) # H(p, x’) if x # x’. But I’,,, has two orbits of length n 
on H(p, X) and also on H(p, 4). As 1 H(p, q) u H(p, x)I < 4n, it follows that 

I WP, n) C-I WP, 4 = n and r,, = r,, has exactly 3 orbits of lengths 71. 
H(p, y) must be a union of two of these orbits and is neither H(p, q) nor 

NP, 4. Thus, H(P, Y) = WP, q) A H(P, 4. Similarly, fJ(q, y) = H(p, x). 
Since {p, q, X, y} is a plane of C!?, if Q- E .?Y takes p to q it takes x to y  and thus 
fixes H&J, x); this is true for each q $ {p, x} U H(p, x). As u also fixes H(p, x), 

this set is fixed by 2n - 1 nontrivial elements of Z: Then ,XH(P,z) is sharply 
transitive on H(p, x), and H(p, x) is a hyperplane. z E XI implies that x E ,& 
(compare [5]), and the lemma follows. 

THEOREM 6. Let 9 be a symmetric design admitting a 2-transitive auto- 
morphism group F such that, for each block B, r, is 2-transitive on both B and 
WB. If r has a regular normal subgroup, then 9 is 3+(2m) for some m and E. 

Proof. Let ,X be the given normal subgroup. By [13], Lemma 5.5, L5 is 
an elementary abelian 2-group and 9 has parameters (1). We may assume that 

E = -1. 
Let x # p. By [13], Lemma 4.5, I’,, has two orbits of points #p, X, 

having 1, points, yi of which are not on any block on p and x(i = 1,2). As 
in [13], Section 10, 

11 + 1, = v  - 2, yl+ ~2 = v - k, 

Yi d 4 I AYi (i= 1,2), 

h~,~/l, + XY,~/~, = n2. 

We may assume that 4 { l1 . By (1) (3), and (5), 

(3) 

(4) 

(5) 

(2’7-1 - l){y,a(v - 2 - II) + (v - k - yl)” lx} = 23-31112 . 

As (v - k)2 3 0 (mod 221n-2), it follows that 

(2”-l - l){-2y12 - 2(v - k) ylll} = 0 (mod 22m--2), 

or yr(yr + (v - k) Zr) = 0 (mod 22m-3). Thus, y1 = 0 (mod 22m-1), since 

v  - k = 2m-1(2m + 1) and 4 7 II . Now (4) implies that 

y1 < I1 1 2(2”-1 - l)(y,/2”-1) < 2y, . 

Thus, l1 = 2(2+l - l)y,/2”-l. Together with (3) and (5), this yields 
Zr = 2n - 2, I2 = 2n, y1 = 2”-l(2+l + I), ya = 11. By Lemma 6, the orbit 
H(p, x) of r,, of length 2n is a hyperplane of AG(2m, 2). Every block on p 
and x meets H(p, X) in 2n - y2 = n points. Also, there are h(2n - y2)/Z2 = +h 
blocks on p, X, and a given point of H(p, x). Now an elementary inclusion- 
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exclusion argument shows that each block on one of the points p, X, meets 
H(p, .x) in X points, while each block on neither p nor x meets N(p, X) in n 
points. Consequently, ,ZH(P,z) fixes the set of blocks on exactly one of the 
points p, X, so the dual of Theorem 2(ii) holds. This completes the proof. 

COROLLARY. Let V be a d-dimensional vector space over GF(q), and G a 
subgroup of PL(V) inducing a rank 3 permutation group on V - (0). Form the 
semidirect product GV, and suppose that there is an intransitive complement to V 

in GV fixing no vector of V. Then d = 2m is even, q may be assumed to be 2, 
and G < Sp(2m, 2). 

Proof. This follows from Theorem 6 and [13], Lemma 4.1 and the proof 
of Lemma 4.5. 

7. THE DESIGNS B(U) 

Let 02 be an affine translation plane of order q = 2” with translation group 
Z. The elements of 2 and the points of rY will be identified. A line oval in a 
is a set 0 of q + 1 lines, one from each parallel class, no three of which 
concur. In the dual of the projectivization of 02, 0 is thus an oval whose knot 
[3, p. 1481 is the dual of the line at infinity. If 02 is desarguesian and this oval 
is a conic, 8 will be called a line conic. 

Set B(U) = {x / x is on a line of U}. 

THEOREM 7. (i). B(U) is a d@erence set in Z whose corresponding symmetric 
design 9(U) has parameters (1) with E = 1. 

(ii). I f  U is a line conic, then 9(U) admits a 2-transitive automorphism 

group Xl, with II a collineation group SL(2, q) of @Jixing a point. 

Proof. (i) Every point of B(U) is on precisely 2 lines of 8: 1 B(U)1 = 
+(q + 1)q. If 1 # 0 e Z, then D fixes a unique line L, E 8. Count in two ways 
the ordered triples (x, L, L’) with x EL E 0 and x EL’ E 9~: 

4 I B(u) n B(@‘)l = q(q - 1) + q + q + 4. 

(The terms on the right correspond to the cases L #L, , L #L’ #L,; 
L=L,,L’#L,;L=L,=L’;andL fL,,L’=L,.)Thisproves(i). 

(ii). Every collineation of 02 fixing U induces an automorphism of 
9(U). There is a group of such collineations, isomorphic to SL(2, q), which is 
transitive on both B(U) and gB(U). The product of this group with Z is thus 
a 2-transitive automorphism group of 9(U). Moreover, the stabilizer of a 
point is SL(2, q). 
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THEOREM 8. If  0 is a line conic in AG(2,2”), then g(0) is isomorphic to 
Y(2m). 

Proof, Let f  be a nondegenerate alternating bilinear form on a 2-dimen- 
sional vector space V over GF(2”). I f  p is a nonzero GF(2)-linear map from 

GF(2”) to GF(2), and V is regarded as a 2mdimensional vector space V’ over 
GF(2), then a nondegenerate alternating bilinear form f’ on V’ is given by 

f’(u, 4 = f(% WY, v, w E V’. 

Moreover, every GF(2”)-linear map on V preservingf is also a GF(2)Jinear 

map on V’ preservingf’ (cf. [9, p. 2291). Thus, 17 = Sp(2, 2”) = SL(2, 2”) 
in its usual representation on V is contained in Sp(2m, 2) in its usual repre- 
sentation on V’. In particular, J7 is transitive on V’ - (0). Let .2Y be as in 
Lemma I. By Theorem I, I’ = 27 is a 2-transitive automorphism group of 
F(2m). However, by Theorem 1, Z is simply the group of translations of 
the vector space V’, hence also the group of translations of V. That is, Z may 
be regarded as the group of translations of AG(2, 2”). It follows that I’ is 
precisely the group described in Theorem 7(ii). I f  B is a block of P(2m), 
then I’, is a collineation group of AG(2, 2”). As II is transitive on nonzero 

vectors, r, and 17 are not conjugate. Since ZB = 1, r, is isomorphic to 1T. 
There is thus a line conic 0 of AG(2,2”) such that B(0) is an orbit of I’, 
([II]; [3, p. 1851). As r, is transitive on B and VB [3, p. 791, while 1 B 1 = 
1 B(B)l, it follows that B = B(0). S’ mce the blocks of Yr(2m) are the images 

of B under 2, while the blocks of a(0) are the images of B(U) under Z, we 
have identified P(2m) with g(0). 

THEOREM 9. Let GY be a Liineburg-Tits plane [12], so Q is a translation 
plane of order q2 = 22” with m odd. 

(i). There is a line oval Q of @preserved by a collineation group of GZ 
isomorphic to the Suzukigroup Sz(q). 

(ii). g(0) is fl(2m). 

Proof. As in the preceding proof, we can regard Sp(4,2”) as a subgroup 
of Sp(4m, 2) transitive on the nonzero vectors. Hence, n = Sz(q) fixes 0 and 
acts on P(4m). Here, 17 has three orbits on vectors, of lengths 1, 

(cl2 + l)(q - 11, (cl2 + 1) 4(P - 1). 

Hence, by Corollary 2 of Section 4, IP fixes a point but no block. 
On the other hand, Di’ is a collineation group of a, where 2 is the trans- 

lation group of both AG(4m, 2) and GZ’. Moreover, IP < ZII. By [12] (or 
[3, p. 186]), it follows that there is a line oval 0 preserved by P. This proves 
(i), and (ii) is now clear. 



GROUPS, DESIGNS AND OVALS 51 

We remark that the existence of 0 or 178 in Theorem 9 was not known in 
[3] and [12]. Th us, the symmetric designs P(2m) provide a proof of a new 

property of the Liineburg-Tits planes. An alternative proof can be given, 
based on cohomological methods; in fact, there are precisely q conjugacy 
classes of subgroups of XII isomorphic to 17 = SF&). 

PROBLEM. What geometric conditions on a line oval 0 of a translation 
plane of order 2” are necessary and sufficient in order that g(0) be isomorphic 
to Y'(2m)? 

EXAMPLE 1. In AG(2,2”), 2” > 4, the lines x = 0 and y  = mx + m2, 
m E GF(2*), form a line oval 0. (In fact, in PG(2,2”), 0 u {L,} consists of a 
line conic together with its knot.) However, C@(0) can be shown not to be 
isomorphic to P(2m). Thus, not every B determines a design g(U) 

isomorphic to a design P(2m). 

EXAMPLE 2. Let D be any commutative non-associative division algebra 

of order 2”. Then the sets of lines {x = 0} u (y = mx + m2 / m E D} and 
{x = 0} u {y = m2x + m} are line ovals in the translation plane coordinatized 
by D. It seems very likely that neither type of line oval produces Y1(2m). 
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